Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Aging Clin Exp Res ; 34(12): 3063-3071, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2035474

ABSTRACT

BACKGROUND: As the aging population is increasing significantly, the communication skills training (CST) on transitional care (TC) is insufficient. AIMS: This study aimed to test the effectiveness of an intervention (the online TC CST [OTCCST] and TC) through the perspectives of healthcare providers (HCPs), older patients, and family members. METHODS: A total of 38 HCPs caring for older patients were randomized to the experimental (n = 18) or control groups (n = 20), and 84 pairs of patients and family members were enrolled (experimental: n = 42 vs. control: n = 42). The primary outcome was HCP communication confidence; while secondary outcomes included patient quality of life (QoL), activities of daily living (ADL), rehospitalization counts, and family caregiving burden. Data were collected from HCPs using a scale measuring confidence in communicating with patients. Patient outcomes were assessed using the McGill QoL Questionnaire-Revised and Barthel Index. Family members were assessed with the Caregiver Burden Inventory. Rehospitalization counts were tracked for 3 months post-discharge. Data were analyzed using multiple regression analysis. RESULTS: Experimental group HCPs showed a significant improvement in communication confidence over the control group (p = 0.0006). Furthermore, experimental group patients had significantly fewer rehospitalization counts within 3-month post-discharge (p < 0.05). However, no significant group differences were found in patient QoL and ADL nor in family caregiver burden. CONCLUSION: The OTCCST can effectively improve HCP communication confidence, and the combination of OTCCST and TC can reduce rehospitalization counts for older patients. The OTCCST allows HCPs to learn asynchronously at their convenience, ideal for continuing education, especially during the COVID-19 pandemic.


Subject(s)
COVID-19 , Transitional Care , Humans , Aged , Quality of Life , Activities of Daily Living , Aftercare , Pandemics , Patient Discharge , Communication
2.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Article in English | MEDLINE | ID: covidwho-1684242

ABSTRACT

Development of the messenger RNA (mRNA) vaccine has emerged as an effective and speedy strategy to control the spread of new pathogens. After vaccination, the mRNA is translated into the real protein vaccine, and there is no need to manufacture the protein in vitro. However, the fate of mRNA and its posttranslational modification inside the cell may affect immune response. Here, we showed that the mRNA vaccine of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein with deletion of glycosites in the receptor-binding domain (RBD) or especially the subunit 2 (S2) domain to expose more conserved epitopes elicited stronger antibody and CD8+ T cell responses with broader protection against the alpha, beta, gamma, delta, and omicron variants, compared to the unmodified mRNA. Immunization of such mRNA resulted in accumulation of misfolded spike protein in the endoplasmic reticulum, causing the up-regulation of BiP/GRP78, XBP1, and p-eIF2α to induce cell apoptosis and strong CD8+ T cell response. In addition, dendritic cells (DCs) incubated with S2-glysosite deleted mRNA vaccine increased class I major histocompatibility complex (MHC I) expression. This study provides a direction for the development of broad-spectrum mRNA vaccines which may not be achieved with the use of expressed proteins as antigens.


Subject(s)
COVID-19 Vaccines/immunology , Spike Glycoprotein, Coronavirus/genetics , Animals , Antibodies, Viral/immunology , Antibody Formation , CD8-Positive T-Lymphocytes/immunology , Cytokines/metabolism , Glycosylation , HEK293 Cells , Histocompatibility Antigens/metabolism , Humans , Immunity , Mice, Inbred BALB C , Unfolded Protein Response , Vaccines, Synthetic/immunology , mRNA Vaccines/immunology
3.
Atmos Environ (1994) ; 246: 118103, 2021 Feb 01.
Article in English | MEDLINE | ID: covidwho-967750

ABSTRACT

China's lockdown to control COVID-19 brought significant declines in air pollutant emissions, but haze was still a serious problem in North China Plain (NCP) during late-January to mid-February of 2020. We seek the potential causes for the poor air quality in NCP combining satellite data, ground measurements and model analyses. Efforts to constrain COVID-19 result in a drop-off of primary gaseous pollutants, e.g., -42.4% for surface nitrogen dioxide (NO2) and -38.9% for tropospheric NO2 column, but fine particulate matter (PM25) still remains high and ozone (O3) even increases sharply (+84.1%). Stagnant weather during COVID-19 outbreak, e.g., persistent low wind speed, frequent temperature inversion and wind convergence, is one of the major drivers for the poor air quality in NCP. The surface PM2.5 levels vary between -12.9~+15.1% in NCP driven by the varying climate conditions between the years 2000 and 2020. Besides, the persistent PM2.5 pollution might be maintained by the still intensive industrial and residential emissions (primary PM2.5), and increased atmospheric oxidants (+26.1% for ozone and +29.4% for hydroxyl radical) in response to the NO2 decline (secondary PM2.5). Further understanding the nonlinear response between atmospheric secondary aerosols and NOx emissions is meaningful to cope with the emerging air pollution problems in China.

4.
Cell Rep ; 32(6): 108016, 2020 08 11.
Article in English | MEDLINE | ID: covidwho-670926

ABSTRACT

The influenza virus hemagglutinin (HA) and coronavirus spike (S) protein mediate virus entry. HA and S proteins are heavily glycosylated, making them potential targets for carbohydrate binding agents such as lectins. Here, we show that the lectin FRIL, isolated from hyacinth beans (Lablab purpureus), has anti-influenza and anti-SARS-CoV-2 activity. FRIL can neutralize 11 representative human and avian influenza strains at low nanomolar concentrations, and intranasal administration of FRIL is protective against lethal H1N1 infection in mice. FRIL binds preferentially to complex-type N-glycans and neutralizes viruses that possess complex-type N-glycans on their envelopes. As a homotetramer, FRIL is capable of aggregating influenza particles through multivalent binding and trapping influenza virions in cytoplasmic late endosomes, preventing their nuclear entry. Remarkably, FRIL also effectively neutralizes SARS-CoV-2, preventing viral protein production and cytopathic effect in host cells. These findings suggest a potential application of FRIL for the prevention and/or treatment of influenza and COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Fabaceae/chemistry , Orthomyxoviridae Infections/drug therapy , Plant Lectins/therapeutic use , Pneumonia, Viral/drug therapy , A549 Cells , Administration, Intranasal , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , COVID-19 , Chick Embryo , Chlorocebus aethiops , Dogs , Female , Humans , Influenza A Virus, H1N1 Subtype/drug effects , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Pandemics , Plant Lectins/administration & dosage , Plant Lectins/pharmacology , Protein Binding , SARS-CoV-2 , Vero Cells , Viral Envelope Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL